Introduction

Sawyer Technical Materials, LLC offers high quality cultured quartz crystal for a variety of optical applications - from polarizing optics for lasers to waveplates for telecommunications to windows for scientific and medical instruments. For all of these applications, birefringence and high transmittance over an extended range of wavelengths are essential. Furthermore, it is vital to ensure both high quality and batch-to-batch consistency with respect to optical homogeneity, inclusion and dislocation content. Sawyer's unique combination of experience, technological expertise and manufacturing resources enable the reliable supply of a wide variety of optical grade quartz products that are custom tailored to customer applications. Products can be supplied in a variety of shapes and sizes from bulk crystal in bar form to cubes, prisms, core-drilled tubes and X-ray oriented blanks.

Optical Grades Available

Sawyer Technical Materials, LLC produces three main grades of crystal designed specifically for optical applications.

OPAG Grade – for general optical applications requiring low-inclusion quartz material with seed-free dimensions up to 100mm (X) by 250mm (Y) by 40mm (Z). Primary growth layers for these crystals are perpendicular to the Z-axis (optic axis) and parallel to the X- and Y-axes.

LPOF Grade – originally designed for use in low-pass optical filters, this grade offers quartz that is practically inclusion free. Similar to OPAG grade, primary growth layers for LPOF crystals are perpendicular to the Z-axis.

WP Grade – originally designed for large waveplate applications, this grade also offers practically inclusion free material. WP grade material differs from both OPAG and LPOF grade in that primary growth layers are perpendicular to the X-axis and parallel to the Y- and Z-axes.

Forms Available

All Sawyer optical grade products are available both as bulk crystals and as fabricated shapes. Bulk crystals can be provided in "as-grown" form, or as "lumbered" bars with primary surfaces ground smooth, dimensioned and oriented to specified tolerances. In addition, a variety of fabricated shapes can be supplied, including blocks, prisms, cylinders and round or rectangular wafers. Standard shapes and dimensions are provided in the tables below, though custom sizes and shapes are available upon request.

	OPAG	LPOF	WP
Dimensions (mm)			
X-axis (max)	100	150	See figure
Y-axis (max)	250	See figure	See figure
Z axis (max)	40	See figure	150

LPOF -	Typical Dir	nensions (mm) [°]	
Y-length	75	90	100	110
Max Z-dimension	50	45	40	35

"Typical dimensions, natural faceting may cause dimensions to vary slightly

WP T	ypical Dim	ensions (n	nm) [°]	
Y-length	75	90	100	110
Max X-dimension	50	45	40	35

Typical dimensions, natural faceting may cause dimensions to vary slightly

Material Properties

Crystal quality

Infrared α^{a} Inclusions

Etch channel density^a Handedness^b Twins

Impurities (ppm)

Al	< 5.0
Ca	< 5.0
Κ	< 5.0
Na	< 5.0
Mg	< 1.0
Ti	< 1.0
Cu	< 0.5
Fe	< 0.5
Li	< 0.5
Mn	< 0.5

< $0.060 (3500 \text{ cm}^{-1} \text{ basis})$ Near zero (LPOF, WP grades) < $1.2/\text{cm}^3$ (OPAG grade) < $100/\text{cm}^2$ Right (left available upon request) None

<	5.0
<	5.0
<	5.0
<	5.0
<	1.0
<	1.0
<	0.5
<	0.5
<	0.5
~	05

Physical properties	
Coefficient of thermal expansion	7.97 x 10 ⁻⁶ /°C (// c-axis, 0-80°C)
	13.37 x 10 ⁻⁶ /°C (⊥ c-axis, 0-80°C)
Thermal conductivity	10.7 W/m°C (// c-axis, @ 50°C)
	6.21 W/m°C (⊥ c-axis, @ 50°C)
Specific heat	0.787 J/g°C (@ 25°C)
Density	2.648 g/cm^3
Young's modulus	97 Gpa (// c-axis, @ 25°C)
	76.5 Gpa (⊥ c-axis, @ 25°C)

Optical properties

Transmittance

Refractive index

193.6 1.6 200.1 1.6 219.5 1.6 242.8 1.6	559991.6549271.6524971.6	8988 627.8 7343 667.8 6227 706.5 3698 766.5 1650 794.8	1.5415 1.5404	5 1.55057 9 1.54947
200.1 1.6 219.5 1.6 242.8 1.6	549271.6524971.6	6227 706.5 3698 766.5	1.5404	9 1.54947
219.5 1.6 242.8 1.6	52497 1.6	3698 766.5		
242.8 1.6			1.5390	7 1.54801
	50525 1.6	1650 794 8		, 1.0 1001
250.3 1.6		1050 794.0	1.5384	8 1.54739
	50032 1.6	1139 844.7	1.5375	3 1.54640
303.4 1.5	57955 1.5	8720 1000	.0 1.5350	3 1.54381
340.4 1.5	56747 1.5	7737 1083	.0 1.5338	7 1.54260
404.6 1.5	55716 1.5	6671 1541	.0 1.5278	1 1.53630
467.8 1.5	55103 1.5	6031 2053	.0 1.5200	5 1.52823
508.0 1.5	54822 1.5	5746 2600	.0 1.5096	1.5172
546.1 1.5	54617 1.5	5535 3000	.0 1.4998	1.5070
589.3 1.5	54425 1.5	5336 4000	.0 1.4654	1.4709

n _e	$-0.65 \ge 10^{-5}$ /°C
no	-0.55 x 10 ⁻⁵ /°C

^a Measured in accordance with IEC Standard CEI/IEC 758, Second Edition, 1993-04. ^b Right handedness defined as clockwise rotation of light polarization plane while viewing toward the light source.